

High-Temperature Systems for Oilfield Measurement-While-Drilling

Robert Estes

Baker Hughes, Houston Technology Center

Workshop for Extreme Environments
Technologies for Space Exploration

May 14-16, 2003
Pasadena Sheraton Hotel
NASA's Jet Propulsion Laboratory

Drilling Systems

MWD System

An MWD system operates remotely and autonomously in a hostile environment

- Measures Physical Parameters
- Processes Data
- Telemeters Data
- Records Data
- Makes Decisions

Smart Bits for Drilling

- Monitor condition of lubricant, bit wear, drilling dynamics (VSS)
- Limited volume (~15 cc)
- High shock & vibration
- High temp & pressure
- **Needs battery power**
- Memory-only device stores computed results
- **Expendable assembly**

Upper limit presently is 150°C

(4) signaling device

power supply

shank end plug

(3) daq / controller

(2) sensor(s)

Instrumented Coring Tools

- Retrieve sample of rock
- Directional alignment via magnetometer / accels
- **Drilling efficiency**
- **Core integrity**
- Preserve pressure

Steerable Drilling Systems

Embedded electronics to 150°C

Reservoir Navigation with MWD

- Geological steering within the reservoir rock at optimal level
- Formation evaluation in real-time
- Long, smooth horizontal sections
- Maximized oil and gas production

Multilateral and Re-entry Wells

High-Temperature MWD

High-Temperature MWD System

Turning up the heat on high temperature **MWD** systems

Navi 185SM, Baker Hughes INTEQ's new hightemperature MWD system delivers reliable performance at an extended temperature range. This probestyle tool is engineered to provide real-time directional or directional/gamma ray measurements at temperatures up to 365° F (185° C). Additional sensors include tool temperature and vibration/stick slip measurement. Formation correlation is made possible by a gamma ray module which uses a dual stack of Geiger Mueller tubes positioned at the lower end of the tool.

The Navi 185 MWD system is available in multiple collar sizes including 4-3/4" and 6-3/4" tools. For more information regarding the high-temperature Navi 185 system, please contact your local Baker Hughes INTEQ representative today.

The tool is powered by a Universal Power Unit turbine/alternator which can be configured for the particular tool size required. Specialized electronics ensure reliable operation at high BHTs.

Upper limit presently is 185°C

Wireline Well Logging

- Logging tool is attached to armored cable during run
- Communications and power via wireline
- Short duration in well; low vibration & shock
 - Directional survey of well trajectory
 - Formation evaluation prior to casing well
 - Logging well after casing is in place

Completion and Production

- Intelligent well completions
- Sub-surface safety valves
- Long-term production monitoring

Long-term reliability unproven

Downhole Applications

Future application needs driven by deep water developments

Mission Type	BHI Division	Mission Time (hrs)	Low Temp (C)	High Temp (C)	Pressure (bar)	Other Environmental Conditions
Smart Drill Bits	Hughes Christensen	24 - 200	-40	250	2000	Shock, vibration, erosion, abrasion
Measurement While Drilling	INTEQ	12 - 200	-40	225	2000	Shock, vibration, erosion, corrosion
Wireline Logging	Baker Atlas	3 - 10	-40	250	2000	Corrosion
Intelligent Completions	Baker Oil Tools	4 - 20	-40	250	2000	Shape charge percussion
Production Monitoring	Baker Oil Tools	5 – 15 years	0	250	1333	Corrosion
Instrumented Pumps	Centrilift	2 – 10 years	0	200	1333	Corrosion

Materials Issues for MWD

- Steel is a load-bearing portion of drilling assembly
 - Strength, elasticity, fatigue, geometry limitations
 - Non-magnetic properties required in many portions
 - Corrosion: Cl⁻ Stress Cracking, H₂S, embrittlement, over-aging (BeCu)
 - Deep water (>5000 ft) making increased demands (30,000 psi)
 - No capability to use large dewar flask
- PCB polyimide available is hygroscopic (bake before assembly)
- Elastomers
 - Running in abrasive materials (mud, rock walls)
 - Gas permeability tends to delaminate & swell (CVD metallization tried)
 - Vibration dampening / suspensions deteriorate at high temp
- Antennas need protection from rock wall abrasion, impacts
- Chemistry is accelerated (batteries, coating interactions)

Methods for Achieving High-Temp

- COTS (Commercial Off-The-Shelf)
 - Pre-screened by vendor
 - Buy and test in-house
 - Contract out for screening and / or upgrades
 - Buy lifetime supply of proven mask / lot
- Qualified parts rated for high-temperature
 - Hard to find
 - Fewer Mil-spec parts being made, but we use when possible
 - High-reliability versions not available for new designs
- Heat management schemes
- Compromises and trade-offs in HW / SW system tasks
- Joint Industry Projects for development of high-temp technology

Making do with what is available

Radiometric IR Imaging

Re-designing to minimize hot spots

PCB Analysis: OnTrak Master/Memory

Bad Board Overview - Flash Side After Initialization 1-4 Flash Chips Warm

IR information	Value
Date of creation	4/25/2003
Time of creation	8:40:32 AM
Camera type	S60 NTSC
Camera lens	24

MWD Gyro Sensor

Rugged, Simple Internal Construction Military "Tank-Killer" Ancestry

Sensor Modeling vs. Temp

Modeling to extend usable sensor range

Sensor Turn-on Thermal Stabilization

Compromising for accuracy / power

Reliability Aspects of GyroTrak®

- Designed in BEST of current sensors and mechanisms
 - Picked rugged military tactical gyro used in F-22 & BAT
 - Using stepper motor with well-established reliability
 - Using new, smaller Mini-Q-Flex accelerometers
- Selected high-temp qualified parts (motor rated 200°C)
 - Electronics designed for excess capacity, speed, inputs
- Chose PCB mounting method lab-proven best for 150°C
 - Ran Finite Element Analysis to pinpoint amplification areas
- Tested and verified robust performance in vibe & shock
 - Critical parts tested well beyond 20 g rms vibration spec
 - Stability of accuracy verified in calibrated test stand
- Implemented new O-Ring mount shock dampening techniques

Designing with best practices approach

Torsional Shock Tester

- Built to simulate downhole "stick-slip" conditions
 - Amplitudes based on downhole measured field data
 - Scaled to 50 times worst-case experience level

Designing beyond worst-case conditions

Hybrid MCM for GyroTrak®

Ceramic on Moly Substrate - Heatsink

reliability

Clamshell Tubular PWA Chassis

"Tube-Pack" Electronics Chassis

Optimizing space for available chips

- Eliminates Bridges
- **Eliminates Shoulder Screws & Grommets**
- More efficient structure than H-frame

Vibration Isolation

O-ring Suspension Research Testing

Amplification Factor "O"

Testing iteratively to optimize design

Interconnection / Solder Problems

Thermal Dissipation Heat Strip

FPGA Implementation

High-Temp UART Required for DSP

Original layout with dedicated UART chip

Revised layout with UART function in FPGA chip

Compromising with mix of Hi-temp parts

Complexity of MWD Electronics

Joint Industry Proposal

Honeywell High-Temp SOI HTMOS

- Deep Trek JIP is mainly funded by the DOE
- Will deliver guaranteed 5-year life at 225C
- Limited product offering
 - Answers needs for minimal systems
 - Leaves big gaps for complex MWD and wireline systems
- Funding needed in lieu of a high-volume market
- A good start on a long road

Oilfield High Temp Development

A Funding Dilemma

- Major oil companies have been reducing internal R&D capacity
- Service companies have been expected to provide newer, better technology
- Industry recession is squeezing revenues
- Service company R&D budgets suffer
 - Technology efforts delayed or canceled
- Government and JIP funding can help
 - Choose projects critical for future
 - But all Hi-temp users together are still a tiny market -- small potatoes!
- Oil companies must help fund promising technology developments, or do without